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Ab initio crystal orbital calculation with the effective core potential (ECP) 
approximation is performed on infinite poly-yne, all-trans-polyethylene, and 
all-trans-polysilane. The optimized bond lengths of poly-yne are predicted 
to be 1.130 ~ and 1.321 ~ with the split valence LP-31G basis set and agree 
fairly well with 4-31G results, 1.166 ~ and 1.339 A. 

The energy band structures of poly-yne and all-trans-polyethylene obtained 
from ECP calculations are in reasonable agreement with those from the all 
electron calculations. The fully optimized geometries of all-trans-polysilane 
are also predicted with the LP-31G basis set as rsisi = 2.264 ~ ,  rsiH = 1.493/~, 
5~ SiSiSi = 118.97 ~ and ~HSiH = 100.35 ~ The computational time for calcula- 
tions of polysilane is found roughly to be comparative to that of polyethylene 
under ECP approximations. 
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1. Introduction 

Ab initio crystal orbital method [1, 2] and its application to the calculations on 
the electronic structures of one-dimensional polymers [3] have been well-docu- 
mented for the last decade. However,  the actual application of the ab initio 
crystal orbital method on polymers are limited to a small number of model 
polymers, for the most part, composed of the hydrogen and the first row elements 
of the periodic table (Li-Ne). Calculations on polymers containing the second-row 
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elements and those heavier than the second-row elements (Na-) have not been 
examined except for the comparatively simpler (HC1)x chain and (SN)x chain 
[3]. Furthermore, few ab initio studies by means of the large size of basis sets 
have been performed except for the pioneering works by Karpfen and co-workers 
[3], and then in investigations of the polymers made up of only first-row elements. 
The major reason for this is the large number of the two electron integrals to 
be handled in the calculations. In the crystal orbital calculations, the number of 
the two electron integrals increases more rapidly when the number of the basis 
function increases than in the case of the isolated molecules [4]. For instance, 
in the calculations of polyethylene, the number of two electron integrals is about 
680 000 in the minimal STO-3G basis set, and about 3 660 000 in the split 
valence 4-31G basis set. This limitation restricts the applicability of ab initio 
crystal orbital calculations. 

On the other hand, a new method to relax this dilemma has been developed 
recently. This is the coreless Hartree-Fock pseudopotential method [5]. 
Especially, the effective core potential (ECP) scheme proposed by Kahn et al. 
[5] is one of the most reliable versions. In the isolated molecular systems, the 
ECP method was reported to give the reasonable results for the orbital energies, 
the equilibrium geometries of molecules, and even the geometries of transition 
states during the chemical reactions [6]. 

At the present time, the purposes of ab initio crystal orbital calculations are 
limited to [7]: (1) the calculation of the band structures or the density of states 
for the interpretation of the ESCA results, and (2) the prediction of the bond 
alternation of conjugated polymers such as polyacetylene. These physical proper- 
ties mentioned above are well-reproduced under the ECP approximation, but 
ECP crystal orbital calculations have not been examined previously. Alterna- 
tively, Durand and co-workers have applied their effective Hamiltonian to 
the treatment on polymers [8]. Their methodology, however, is restricted to 
the purpose (1) in the above, because their Hamiltonian does not contain 
both the nuclear repulsion term and the electron repulsion term; in other words, 
their method is only the modification of the extended HiJckel method [9]. 
Furthermore, as their wave function does not have the self-consistency, the 
physical properties obtained could sometimes lack reliability at all. For example, 
the charge density from the extended Hiickel calculations is often overestimated, 
and, thus, questionable in principle. 

In the present paper, we therefore first develop the ab initio ECP method on 
the calculation of polymers in order to avoid the alternative all electron calcula- 
tions. Calculational results are given on some model polymers in comparison 
with those of the all electron ones. The model polymers adopted in the present 
calculations are (1) poly-yne (carbyne) (C2) x, (2) all- trans- polyethylene (C2H4) ~, 
and (3) all-trans-polysilane (SizHa)x. The optimized geometry of the poly-yne 
has been extensively investigated in various basis set levels [10]. The ability of 
the prediction of the geometry with the ECP approximation is here checked 
within the minimal and double zeta basis set level, thereby fulfilling the purpose 
(2) given above. On the other hand, the band structure of polyethylene has been 
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studied in various levels of approximations, i.e. both semi-empirically [11] and 
non-empirically [12]. Here the reliability for the shape of the band structures is 
checked on polyethylene, thereby fulfilling the purpose (1) given above. Although 
the other model polymer, polysilane is itself not so well understood (both 
experimentally and theoretically), recent investigations on the plasma deposited 
amorphous silicon [13] have indicated the existence of the (Sill2). units in a-Si : H 
film. Thus, it is significant to investigate both the geometrical and electronic 
structure of polysilane as the ideal model of the (Sill=), oligomers. However, 
corresponding all-electron calculations for polysilane are not performed here. 

2. Method of Calculation 

The ab initio crystal orbital method with and without the ECP approximation 
is used to obtain the electronic structures of polymers throughout this study 
[14]. Since the crystal orbital method results from the Hartree-Fock linear 
combinations of atomic orbitals molecular orbital (LCAO MO) method for finite 
molecules [15] by including periodic boundary conditions, the extension of the 
ECP approximation to the crystal orbital is straightforward as briefly summarized 
below. 

In analogy to the molecular case, the following complex pseudoeigenvalue 
problem has to be solved iteratively in each k-point of the first Brillouin zone 
[1;  [2]. 

F(k )C(k ) = e (k )S(k )C(k ) (1) 

where 

. o .  F(k) = ~ exp (tkR,)F,s (2a) 
tt = l e o  

�9 On S(k)=  L exp(tkR,)S,s (2b) 
tt =lOO 

where Rn is the lattice vector from the reference cell to cell n. The atomic overlap 
integrals between the reference cell and the cell n are defined by Sr ~ = (Xr IX, ) , 0  
and the corresponding Fock matrix elements are defined as, 

1 I co M I ) 
F,, r vo 0 1 j n 

I j~--oO a = l  

+ f f hi Onhl (Oh, nl,] 2 F.P.~[2G I.~) (3) --  \ru ISO/J 
h =--oo l ~--o0 ~ V 

V~ is the nuclear attraction term in the all electron case, whereas in the ECP 
case V~ is the sum of the nuclear attraction term and the core repulsion term, 
that is, 

V~ = Zi~-Xi~ V~ cej (4) 
Ir -R~I  
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where N~ is the number of the core electron on center o~, and the core repulsion 
w E C P  i term _ ~ is defined as 

LMAX- 1 - l  
V ~  E C P , :  VLMAX(r--R~)+ E E AV,(r-R~)llm)(lm[ 

l=0 m =l 
(5) 

where 

AVl(r) = Vt(r) - VLMAX (r) (6a) 

V(r) = E Ar  n' exp (-flir2). (6b) 
i 

For more detail about the crystal orbital method and the ECP approximation, 
see Refs. [1] and [2], and Ref. [5], respectively. 

The ECP parameters appearing in Eq. (6b) that are used here are those of Topiol 
et al. [16]. The LP-3G [17] and the LP-31G [18] basis sets are used for the 
calculations of poly-yne(carbyne), (C2)x ; the LP-3G basis set for polyethylene, 
(C=H4)~, and the scaled single zeta (SSZ) [19] and the LP-31G basis sets for 
polysilane, (Si21-14)x. In order to avoid the numerical instabilities due to nearly 
linear dependencies in the k-dependent overlap matrix S(k), the eigenvectors 
of S(k) corresponding to eigenvalues smaller than 0.02 are discarded [20]. 

The remaining important problem is the number of neighbors' interaction taken 
into account, that is, the upper indices n, h, and I in Eq. (3). In the present work, 
the interactions up to the fifth neighbors are explicitly included when the minimal 
basis sets are used, and up to the three neighbors when the double zeta basis 
sets (4-31G and LP-31 G) are employed. These limits are still sufficient to include 
a large part of the significant interactions, and give the results within reasonable 
computational effort. Pople's four point and three point extrapolation procedures 
built in the GAUSSIAN 70 program system [21] are applied to accelerate the 
convergency of the density matrices. 

3. Results and Discussion 

3.1. Poly-yne (Carbyne) 

The structure of poly-yne is shown in Fig. 1, and the energetically optimized 
C-C bond lengths are summarized in Table 1 along with those obtained by 
Karpfen [22] for comparison. The C-C bond lengths by the LP-31G basis, 
1.130 A, and 1.321/~ corresponding to the triple and single bonds, agree fairly 
well with the all-electron 4-31G result 1.166/~ and 1.339 ~ as well as with the 
7s3p result by Karpfen, 1.199 ~ and 1.358/~. In contrast, the LP-3G basis 
gives relatively poorer bond lengths, 1.305 ~ and 1.540/~. These values are 
apparently over-estimated, and, thus, it is insufficient to determine the geometrical 
structures of polymers in the combination of the effective core potential and the 
minimal basis set like LP-3 G basis set. This defect has been pointed out by Topiol et 
al. [19] in the finite molecular case. 
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Fig. la--c. The  view of the structures of (a) poly-yne, 
(b) polyethylene, and (e) polysilane. The block surroun- 
ded with broken line is the unit cell in the present 
calculations 
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Table 1. The  optimized bond lengths of poly-yne 

Number of 
Basis set neighbors rc~c[/~]  r c -c [~]  

STO-3G a 5 1.176 1.402 
STO-3G b 6 1.185 1.394 
LP-3G a 5 1.305 1.540 
4 -31G a 3 1.166 1.339 
LP-31G a 3 1.130 1.321 
7s3p b 4 1.199 1.358 
7 s 3 p l d  b 2 1.198 1.364 

a Present work. 
b From Ref. [10], by Karpfen. 

Furthermore, it is significant to point out that STO-3G basis also overestimates 
the bond lengths although the absolute error is smaller compared with that of 
LP-3G basis set. 

Table 2 shows the ionization potential from the Koopmans' theorem [23], the 
band gap, and the band width of the highest occupied band (i.e., the highest 
valence band), where the results by the LP-3G basis at the STO-3G optimized 
geometry are also collected. Agreement of all those quantities between 4-31G 
basis and LP-31G basis is excellent. 
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Table 2. The Koopmans' ionization potential (I.P.), the band gap (B.G.), and the 
band width of the highest occupied band (B.W.) of poly-yne, a 

Number of 
Basis set neighbors I.P. B.G. B.W. 

STO-3G b 5 0.329 0.428 0.242 
STO-3G c 6 0.299 - -  0.260 
LP-3G b 5 0.414 0.347 0.183 
LP-3G b'd 5 0.521 0.422 0.197 
4-31G b 3 0.478 0.485 0.201 
LP-31G b 3 0.516 0.518 0.197 
7s3p c 4 0.348 - -  0.273 
7s3p b'~ 3 0.460 0.457 0.211 
7s3p b'f 3 0.476 0.472 0.208 

a All units are shown in a,u. 
b Present work. 
c From Ref. [10] by Karpfen. 
d At STO-3G optimized geometry. 
e At 7s3p optimized geometry from Ref. [10], see also Table 1. 
f At 4-31G optimized geometry. 

Among  all the basis sets the STO-3 G basis gives the worst value with the ionization 
potential  and the band width, while the LP-3 G basis With the band gap. Therefore ,  
in the description of the valence band, the L P - 3 G  basis is superior to the 
all-electron S T O - 3 G  basis, because the ionization potential  and the band width 
of the highest valence band are concerned only with the valence band structure, 
while the band gap is calculated f rom the energetical positions of the highest 
valence band and the lowest conduction band. Furthermore,  the L P - 3 G  results 
at the S T O - 3 G  optimized geometry  reasonably reproduce the 4 -31G results 
including the band gap, which suggests that the LP-3G basis would give the 
sufficient values for these propert ies (I.P., B.G., and B.W.) if the proper  geometry 
is chosen. 

Compared  with the previous works, the minimal S T O - 3 G  basis results exhibit 
an overall agreement  with that of Karpfen as well as that of Kertesz et al.. 
However ,  the ionization potential  f rom Koopmans '  theorem as well as the band 
gap are larger than those of Karpfen when the double zeta basis sets are adopted, 
i.e. the 4-31G,  the LP-31G,  and the 7s3p basis sets according to Karpfen 's  
notation. Thus we have per formed the additional calculations using the 7s3p 
basis set [24] at Karpfen 's  7s 3p optimized geometry,  and at the present  4 -31G 
optimized geometry,  which are also collected in Table 2. Our  7s3p results are 
also different f rom those of Karpfen.  Presumably,  the band structures reported 
by Karpfen contain something erroneous. Furthermore,  we find that the total 
energy at the 4-31 G optimized geometry,  - 7  5.6414 7 a.u., is considerably lower 
than that at the 7s3p optimized geometry,  -75 .63883  a.u., which may be 
introduced by the difference of lattice sum truncations, that is, Karpfen 's  cell-wise 
summation and our symmetric cutoff according to the Karpfen 's  definition [31]. 
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3.2. Polyethylene 

The geometry employed in the present calculation is assumed as follows, rcc  = 
1.547 ~ ,  rcr~ = 1.089 A, ~ C C C  = 112.6 ~ and <):HCH = 107.0 ~ The structure of 
the unit cell adopted is shown in Fig. 1, where the all-trans form is assumed. 
The geometry is identical to that energetically optimized by Karpfen with 
STO-3G basis set [11]. 

The energy band structures of the valence bands are shown in Fig. 2. The shapes 
of the energy band by means of the STO-3G and the LP-3G basis sets are in 
reasonable agreement,  although the band positions are slightly different between 
them. For  instance, the Koopmans '  ionization potential, corresponding to the 
value of F6 band at k = 0, i.e. the maximum of the highest occupied band, differs 
0.04 a.u. as shown in Table 3. However,  this value remains within the range 
which is brought by the choice of the basis set and the geometry assumed. 
Furthermore,  the value of the band gap as well as the band width of F0 band 
also shown in Table 3 indicates this difference is only originated by the parallel 
movement  of absolute energy values. 

More remarkable disagreement is found at the F1 band, where the shape of the 
energy band as well as the absolute position of the energy band is different. 
However,  this energy band is not so chemically important, because the band is 
far from the Fermi level and thus chemically inactive. 

Although some trivial disagreements of the energy band structures are seen, no 
serious problem is encountered.  Thus, the overall consistency of the energy band 
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Fig. 2a, b. The energy band structures of polyethylene calculated with (a) the STO-3G basis set and 
(b) the LP-3G basis set 
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Table 3. The  Koopmans '  ionization potential (I.P.), the band gap (B.G.), and the 
band width of the highest occupied band (B.W.) of polyethylene a 

Number  of 
Basis set neighbors I.P. B.G. B.W. 

STO-3G b 5 0.364 0.840 0.201 
LP-3G b 5 0.406 0.840 0,190 
STO-3G c 6 0.371 - -  - -  
STO-3G a 5 0.384 0.719 - -  

a All units are shown in a.u. 
b Present  work. 
c From Ref, [12]. 
d From Ref. [22]. 

structure between those obtained from the STO-3G basis and the LP-3G basis 
is very satisfactory. 

3.3. Polysilane 

Apart from poly-yne and polyethylene discussed above, the geometry of poly- 
silane has not been known both experimentally and theoretically. Therefore, we 
have performed the geometry optimization at the starting point. Owing to the 
large expenses of computer time, the all-trans structure is assumed and the 
helical structure is not taken into account. 

The structure and the optimized geometry of polysilane are shown in Fig. 1 and 
Table 4, respectively. The optimized Si-Si and Si-H bond lengths by the SSZ 
basis are 2.453/~ and 1.523/~, which are considerably longer than those of 
results by the LP-31G basis, 2.264 A and 1.493 A. Considering the poorer 
optimized bond lengths of poly-yne by the minimal LP-3G basis, the results by 
the LP-31G would be more reliable, although we have no experimental data to 
be compared with. For the optimized bond angles, there is no serious disagree- 
ment between the SSZ and the LP-31G basis sets. 

Table 5 shows the Koopmans' ionization potential, the band gap, and the net 
charges of the silicon and hydrogen atoms from the Mulliken population analysis 
[25]. The ionization potential is in reasonable agreement with that of n-SisH12 
9.36 eV (0.344 a.u.) which is the largest Sill2 chain experimentally measured 

Table 4. The  optimized geometry  of polysilane 

Number  of 
Basis set neighbors rsisi[/~ ] rsiH[]~] ~SiSiSi[ ~ ~HSiH[  ~ 

SSZ 5 2.453 1.523 114.50 105.50 
LP-31G 3 2.264 1.493 118.97 100.35 
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Table 5. The Koopmans' ionization potential (I.P.), the band gap (B.G.), 
and the atomic net charges of polysilane a 

Basis set I.P. B.G. qsi qH 

SSZ 0.384 0.386 -0.022 +0.011 
LP-31G 0.396 0.400 +0.148 -0.074 

a All units are shown in a.u. 

[26]. The band gaps are calculated to be about 0.4 a.u. (11 eV) in both cases, 
indicating the insulating behavior of the system, although these gaps are consider- 
ably smaller than those of poly-yne 0.48 a.u. and polyethylene 0.81 a.u., and 
the gaps obtained by the ab initio crystal orbital method are systematically 
overestimated by several eV [27]. 

It is significant that the atomic net charge obtained from the SSZ basis exhibits 
the complete disagreement with that from the LP-31G basis. Considering the 
difference of the electronegativity [28] between the silcon and the hydrogen 
atoms, the silicon atom would be positively charged. The negatively charged 
silicon atom calculated by the SSZ basis is thus questionable, however, the facts 
that the absolute values of the net charge by the SSZ basis are small and that 
the double zeta basis is well known to overestimate the atomic net charges [29] 
suggest that the polysilane chain would almost be a non-polarized structure. 

The energy band structure calculated by the LP-31G basis set is shown in Fig. 
3, in which some different features from the analogous carbon chain, poly- 
ethylene, are seen. The positions of F4 and F6 bands at k = ~r/a are shifted to 

Fig. 3. The energy band structure of polysilane 
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the upper energy region. Then F3, F4, Fs, and 176 bands are almost degenerate 
at k =zr/a, whereas the corresponding energy bands of polyethylene are 
apparently split. These band structures are reflected on the photoelectron spectra 
of n-SisH12 in which the corresponding valence band appears to be broad [26], 
whereas the ESCA result of polyethylene [30] showed two distinct peaks in the 
corresponding energy region. The band widths totally become narrower and the 
curvature of each energy band also becomes smaller. 

3.4. Comparison of Computational Aspects 

In Table 6, the typical CPU times on H I T A C  M - 2 0 0 H  computer required for 
the present calculations are summarized, and the numbers of two electrons 
integrals are also listed. In the case of the calculations of polyethylene chain, 
the reduction of the two electron integrals with respect to the CPU time as well 
as their numbers are large. The CPU time is reduced from 253 s to 109 s and the 
numbers of two electron integrals from 540695 to 389563. However, the total 
CPU time required for the ECP case, 452 s, is extremely larger than that for 
the all electron case, 405 s, due to the extra CPU time for the evaluation of 
ECP one electron integrals. Thus, the saving of the CPU time fails in the case 
of polyethylene. 

Table 6. The typical CPU time and the number of two electron integrals in the 
present calculations on HITAC M200H computer 

Number of 
Calculation b two electron 

Polymer Basis set a step CPU time c integrals 

Polyethylene STO-3G(5) 1E 6.14 540 695 
2E 253.46 
SCF/cycle 12.82 
Total 404.85 

LP-3G(5) 1E 229.28 389 536 
2E 109.35 
SCF]cyde 10.01 
Total 451.78 

Polysilane SSZ(5) 1E 354.52 328 608 
2E 379.36 
SCF/cycle 9.47 
Total 824.12 

LP-31G(3) 1E 310.77 1 780 235 
2E 217.53 
SCF/cycle 43.40 
Total 1193.36 

a Values in parentheses denote the number of neighbors. 
b 1E = one electron integrals, 2E = two electron integrals. 
c In seconds. 
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The origins of this failure would be as follows (1) programming codes for the 
ECP integrals are inefficient compared with the extremely efficient two electron 
integral package adopted from GAUSSIAN 70 program, and (2) the number 
of the basis functions reduced by the ECP approximation is too small in the 
case of polyethylene, considering the ECP is fitted by 8 terms of Gaussian 
functions. In the light of (1) in the above, the modification of the program is in 
progress. For  (2), the simplification of the ECP parameters would make the total 
CPU time shorter. Generally speaking, in terms of (2) in the above, it must be 
emphasized that if the number of the basis functions and the parameters for the 
ECP are the same, the CPU time for the evaluation of the ECP integrals will 
not change much, independently of the class of the atoms to be calculated. This 
means that the heavier the atoms become, the larger the CPU time is, saved 
compared with the all electron calculation. Indeed, we found the CPU time for 
the evaluation of the ECP integrals of polysilane was roughly comparative to 
that of polyethylene, during calculations by means of the SSZ and the LP-3G 
basis sets. Since the SSZ basis is composed of 3s4p(Si), 4s(H) primitive Gaussian 
functions, and 9 ECP Gaussians, thus the required CPU time factor multiplied 
by the LP-3G basis of polyethylene is almost 4 /3  • 9 /8  = 3 /2  which reasonably 
interprets the difference of CPU time of 229 and 354 seconds. 

4. Conclusions 

Ab initio crystal orbital calculations with the ECP approximation have been 
carried out on infinite poly-yne, all-trans-polyethylene, and all-trans-polysilane 
chains. The equilibrium geometry of poly-yne by the LP-31G basis is in fairly 
good agreement with the 4-31G geometry and the previously calculated 7s3p 
geometry, while by the LP-3G basis the result for the bond lengths is rather 
longer and thus poorer.  The energy band structures of polyethylene and poly-yne 
obtained from the ECP calculatons are in reasonable agreement with those 
obtained from the all electron calculations, even if the minimal LP-3G basis is 
employed. 

The optimized geometry of all-trans-polysilane is determined as rsisi = 2.264 ~,  
rsiH = 1.493 ~ ,  <):SiSiSi = 118.97 ~ and <~HSiH = 100.35 ~ and awaits the experi- 
mental confirmation. 

The total CPU time for the calculation of polysilane is roughly comparative to 
that of polyethylene, and thus the crystal orbital calculations including heavier 
elements are now within the range of the actual calculations. 
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